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Latent Variable

Type of construct: Latent variable

Dominant statistical model: Common factor model
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Fundamental scientific question: Does the latent variable exist?

Scientific paradigm: Positivism

Statistical approach: Confirmatory factor analysis

Examples: Abilities, attitudes, traits
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Artifacts

Many disciplines deal with design constructs (artifacts) and their
interplay with behavioral constructs (latent variables)

Discipline Latent variable Artifact

Marketing: Consumer brand attitude Advertising mix

Criminology: Intention to commit a crime Prevention strategy

Education: Pupil’s knowledge base Teaching program

Psychotherapy: Mental illness Psychiatric treatment

→ How to model and assess these artifacts?
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Latent Variables & Artifacts

Type of construct: Latent variable Artifact

Dominant statistical model: Common factor model Composite model
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ε1 ε3ε2
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c

w2w1 w3

Fundamental scientific question: Does the latent variable exist? Is the artifact useful?

Scientific paradigm: Positivism Pragmatism

Statistical approach: Confirmatory factor analysis Confirmatory composite analysis

Examples: Abilities, attitudes, traits Indices, therapies,
intervention programs
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Confirmatory Composite Analysis

Confirmatory composite analysis (CCA) consists of 4 steps:

1 Specification of the composite model

2 Identification of the composite model

3 Estimation of the composite model

4 Assessment of the composite model
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Specification of the Composite Model
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Minimal composite model
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Is this a statistical model?

Consider the model-implied indicators’ population covariance
matrix:

Σ =



x1 x2 y z

σ11

σ12 σ22

λ1σcy λ2σcy σyy

λ1σcz λ2σcz σyz σzz

 ,

where λ1 = cov(x1, c) and λ2 = cov(x2, c).

This matrix has rank-one constraints, which can be exploited in
statistical testing.→ Indeed, it is a statistical model
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Composite Model vs. Common Factor Model
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(a) Composite factor model
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(b) Common factor model
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Composite Model vs. Common Factor Model

Model-implied indicators’ covariance matrix of the...

...composite factor model:

Σ =


x1 x2 y z

λ21 + θ1
λ1λ2 + θ12 λ22 + θ2
λ1σcy λ2σcy σyy
λ1σcz λ2σcz σyz σzz



...common factor model:

Σ =


x1 x2 y z

λ21 + θ1
λ1λ2 λ22 + θ2
λ1σcy λ2σcy σyy
λ1σcz λ2σcz σyz σzz



⇒ The common factor model is nested in the composite model
[Henseler et al. 2014]
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Identification of the Composite Model

Identification of composite models is straightforward:1

I Normalization of the weights, e.g., w ′
jΣjjw j = 1

I Each composite must be connected to at least one composite
or variable not forming the composite→ All model parameters can be uniquely retrieved from the

population indicator covariance matrix

In case of composites embedded in a structural model, also the
structural model needs to be identified [Dijkstra, 2017]

1We ignore trivial regularity assumptions such as weight vectors consisting
of zeros only; and similarly, we ignore cases where intra-block covariance
matrices are singular.
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Model Identification: Degrees of Freedom

For the composite model the degrees of freedom are calculated as
follows:

df = # non-redundant off-diagonal elements of the indicator covariance matrix
− # free correlations among the composites
− # free covariances between the composites and indicators not forming a composite
− # covariances among the indicators not forming a composite
− # free non-redundant off-diagonal elements of each intra-block covariance matrix
− # weights
+ # blocks

For our minimal composite example:

df = 6 − 0 − 2 − 1 − 1 − 2 + 1 = 1
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Estimation of the Composite Model

To determine the weights, several methods have been proposed:
I Predetermined weights such as unit weights or weights

obtained by experts
I Approaches to generalized canonical correlation analysis

(GCCA) such as MAXVAR
[Kettenring, 1971]

I Regularized general canonical correlation analysis (RGCCA)
[Tenenhaus & Tenenhaus, 2011]

I Partial least squares path modeling (PLS-PM)
[Wold, 1975]

I Generalized structured component analysis (GSCA)
[Hwang & Takane, 2004]

13/27



GCCA: MAXVAR

MAXVAR maximizes the largest eigenvalue of the composite
correlation matrix to obtain the weights⇒ The total variation of the composites is explained as well as
possible by one underlying ”principal component”

Advantage over other approaches to GCCA that it has a closed
form expression
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Assessment of the Composite Model

The overall model fit can be assessed in two non-exclusive ways:

I Measures of fit (heuristic rules)

I Test for overall model fit
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Fit Measures

The overall model fit can be assessed in two non-exclusive ways:

I Standardized root mean squared residual (SRMR)

I Root mean squared residual covariance matrix (RMSΘ)

I Normed fit index (NFI)

I . . .

More research is required to assess their performance in case of
composite models
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Test for Overall Model Fit

To test the overall model fit, a bootstrap-based test can be used
(H0 : Σ = Σ(θ)) [Beran & Srivastava, 1985, Bollen & Stine, 1992]
in combination with various discrepancy measures such as

I SRMR

I Geodesic distance

I Squared Euclidean distance
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Test for Overall Model Fit

It compares the model-implied indicators’ covariance matrix of the
composite and a saturated model:
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(d) Saturated model

If the test is not rejected empirical evidence for the usefulness of
the artifact is obtained

18/27



Monte Carlo Simulation

Is the test for overall model fit capable to detect misspecifications
in the composite model such as
I Wrongly assigned indicators
I Correlations between indicators of different blocks that cannot

be fully explained by the composites

⇒ Monte Carlo simulation to assess the performance

Simulation setup:
I 5 population models
I weights are calculated by MAXVAR
I 10,000 runs
I 200 bootstrap runs
I normally distributed datasets
I various sample sizes from 50 to 1,450
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Monte Carlo Simulation: Population Models

Experimental condition Population model Estimated model

1) No misspecification
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3) Unexplained correlation

x11 x12 x13 x21 x22 x23

c1 c2

w12 = .2

w11 = .6 w13 = .4

w22 = .2

w21 = .4 w23 = .6

ρ = .3

.5
.5 .5

.5
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Monte Carlo Simulation: Population Models

Experimental condition Population model Specified model

4) No misspecification
x11 x12 x13

x21 x22 x23

x31 x32 x33

c1

c2

c3

w12 = .4

w11 = .6 w13 = .2

w22 = .5

w21 = .3 w23 = .6

w32 = .5

w31 = .4 w33 = .5

ρ13 = .5

ρ
12 = .3 ρ23

= .4

.5
.5 .5

.0
.2 .4

.4
.25 .16

x11 x12 x13

x21 x22 x23

x31 x32 x33

c1

c2

c3
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ŵ11 ŵ13

ŵ22
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Monte Carlo Simulation: Rejection Rates
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Monte Carlo Simulation: Rejection Rates

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ●

dL SRMR dG

Population m
odel 2

Population m
odel 3

50 350 650 950 1250 50 350 650 950 1250 50 350 650 950 1250

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Sample size

R
ej

ec
tio

n 
ra

te

Significance level: ●10% 5% 1%
23/27



Monte Carlo Simulation: Rejection Rates

●
● ●

●
● ●

●
● ● ●

● ●
● ● ●

●

●

●

●

●

●

●

●

●

●
● ● ● ● ●

●
● ●

●
● ●

●
● ● ●

● ●
● ● ●

●

●

●

●

●

●

●

●

●

●
● ● ● ● ●

●

● ● ● ● ●
● ●

● ● ● ●
● ●

●

●

●

●

●

●

●

●

●

●
● ● ● ● ● ●

dL SRMR dG

Population m
odel 4

Population m
odel 5

50 350 650 950 1250 50 350 650 950 1250 50 350 650 950 1250

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Sample size

R
ej

ec
tio

n 
ra

te

Significance level: ●10% 5% 1%
24/27



Extension: Second-order Composites

Artifacts that are built of other constructs can be modeled and
tested such as an artifact built of latent variables
[Van Riel et al., 2017] or artifacts [Schuberth & Henseler, 2018]

ξ2ξ1 ξ3

C

x12x11 x13 x22x21 x23 x32x31 x33

ε11 ε12 ε13 ε21 ε22 ε23 ε31 ε32 ε33

(e) Composite of common factors

c2c1 c3

C

x12x11 x13 x22x21 x23 x32x31 x33

(f) Composite of composites
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Extension: Multigroup Comparison

It can be assessed whether artifacts are built the same across
groups (MICOM) [Henseler et al. 2016].

It can be assessed whether the built artifact’s behavior is the same
across groups, i.e., comparing the model-implied indicator
variance-covariance matrix across groups using a permutation test
[Klesel et al., in press].
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Confirmatory Composite Analysis

Thank you!
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email: f.schuberth@utwente.nl
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