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Latent Variable

Type of construct: Latent variable

Dominant statistical model: Common factor model
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Fundamental scientific question: Does the latent variable exist?

Scientific paradigm: Positivism

Statistical approach: Confirmatory factor analysis

Examples: Abilities, attitudes, traits
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Artifacts

Many disciplines deal with design constructs (artifacts) and their
interplay with behavioral constructs (latent variables)

Discipline Latent variable Artifact

Marketing: Consumer brand attitude Advertising mix

Criminology: Intention to commit a crime Prevention strategy

Education: Pupil’s knowledge base Teaching program

Psychotherapy: Mental illness Psychiatric treatment

→ How to model and assess these artifacts?
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Latent Variables & Artifacts

Type of construct: Latent variable Artifact

Dominant statistical model: Common factor model Composite model
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c
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Fundamental scientific question: Does the latent variable exist? Is the artifact useful?

Scientific paradigm: Positivism Pragmatism

Statistical approach: Confirmatory factor analysis Confirmatory composite analysis

Examples: Abilities, attitudes, traits Indices, therapies,
intervention programs
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Confirmatory Composite Analysis

Confirmatory composite analysis (CCA) consists of 4 steps:

1 Specification of the composite model

2 Identification of the composite model

3 Estimation of the composite model

4 Assessment of the composite model
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Specification of the Composite Model
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Minimal composite model
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Is this a statistical model?

Consider the model-implied indicators’ population covariance
matrix:

Σ =



x1 x2 y z

σ11

σ12 σ22

λ1σcy λ2σcy σyy

λ1σcz λ2σcz σyz σzz

 ,

where λ1 = cov(x1, c) and λ2 = cov(x2, c).

This matrix has rank-one constraints, which can be exploited in
statistical testing.→ Indeed, it is a statistical model
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Composite Model vs. Common Factor Model
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(a) Composite factor model
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(b) Common factor model
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Composite Model vs. Common Factor Model

Model-implied indicators’ covariance matrix of the...

...composite factor model:

Σ =


x1 x2 y z

λ21 + θ1
λ1λ2 + θ12 λ22 + θ2
λ1σcy λ2σcy σyy
λ1σcz λ2σcz σyz σzz



...common factor model:

Σ =


x1 x2 y z

λ21 + θ1
λ1λ2 λ22 + θ2
λ1σcy λ2σcy σyy
λ1σcz λ2σcz σyz σzz



⇒ The common factor model is nested in the composite model
[Henseler et al. 2014]
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Identification of the Composite Model

Identification of composite models is straightforward:1

I Normalization of the weights, e.g., w ′
jΣjjw j = 1

I Each composite must be connected to at least one composite
or variable not forming the composite→ All model parameters can be uniquely retrieved from the

population indicator covariance matrix

In case of composites embedded in a structural model, also the
structural model needs to be identified [Dijkstra, 2017]

1We ignore trivial regularity assumptions such as weight vectors consisting
of zeros only; and similarly, we ignore cases where intra-block covariance
matrices are singular.
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Model Identification: Degrees of Freedom

For the composite model the degrees of freedom are calculated as
follows:

df = # non-redundant off-diagonal elements of the indicator covariance matrix
− # free correlations among the composites
− # free covariances between the composites and indicators not forming a composite
− # covariances among the indicators not forming a composite
− # free non-redundant off-diagonal elements of each intra-block covariance matrix
− # weights
+ # blocks

For our minimal composite example:

df = 6 − 0 − 2 − 1 − 1 − 2 + 1 = 1
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Estimation of the Composite Model

To determine the weights, several methods have been proposed:
I Predetermined weights such as unit weights or weights

obtained by experts
I Approaches to generalized canonical correlation analysis

(GCCA) such as MAXVAR
[Kettenring, 1971]

I Regularized general canonical correlation analysis (RGCCA)
[Tenenhaus & Tenenhaus, 2011]

I Partial least squares path modeling (PLS-PM)
[Wold, 1975]

I Generalized structured component analysis (GSCA)
[Hwang & Takane, 2004]
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GCCA: MAXVAR

MAXVAR maximizes the largest eigenvalue of the composite
correlation matrix to obtain the weights⇒ The total variation of the composites is explained as well as
possible by one underlying ”principal component”

Advantage over other approaches to GCCA that it has a closed
form expression
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Assessment of the Composite Model

The overall model fit can be assessed in two non-exclusive ways:

I Measures of fit (heuristic rules)

I Test for overall model fit
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Fit Measures

The overall model fit can be assessed in two non-exclusive ways:

I Standardized root mean squared residual (SRMR)

I Root mean squared residual covariance matrix (RMSΘ)

I Normed fit index (NFI)

I . . .

More research is required to assess their performance in case of
composite models
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Test for Overall Model Fit

To test the overall model fit, a bootstrap-based test can be used
(H0 : Σ = Σ(θ)) [Beran & Srivastava, 1985, Bollen & Stine, 1992]
in combination with various discrepancy measures such as

I SRMR

I Geodesic distance

I Squared Euclidean distance
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Test for Overall Model Fit

It compares the model-implied indicators’ covariance matrix of the
composite and a saturated model:
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(c) Composite model
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(d) Saturated model

If the test is not rejected empirical evidence for the usefulness of
the artifact is obtained
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Monte Carlo Simulation

Is the test for overall model fit capable to detect misspecifications
in the composite model such as
I Wrongly assigned indicators
I Correlations between indicators of different blocks that cannot

be fully explained by the composites

⇒ Monte Carlo simulation to assess the performance

Simulation setup:
I 5 population models
I weights are calculated by MAXVAR
I 10,000 runs
I 200 bootstrap runs
I normally distributed datasets
I various sample sizes from 50 to 1,450
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Monte Carlo Simulation: Population Models

Experimental condition Population model Estimated model

1) No misspecification
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3) Unexplained correlation
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Monte Carlo Simulation: Population Models

Experimental condition Population model Specified model

4) No misspecification
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Monte Carlo Simulation: Rejection Rates
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Monte Carlo Simulation: Rejection Rates
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Monte Carlo Simulation: Rejection Rates
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Extension: Second-order Composites

Artifacts that are built of other constructs can be modeled and
tested such as an artifact built of latent variables
[Van Riel et al., 2017] or artifacts [Schuberth & Henseler, 2018]

ξ2ξ1 ξ3

C

x12x11 x13 x22x21 x23 x32x31 x33

ε11 ε12 ε13 ε21 ε22 ε23 ε31 ε32 ε33

(e) Composite of common factors

c2c1 c3

C

x12x11 x13 x22x21 x23 x32x31 x33

(f) Composite of composites
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Extension: Multigroup Comparison

It can be assessed whether artifacts are built the same across
groups (MICOM) [Henseler et al. 2016].

It can be assessed whether the built artifact’s behavior is the same
across groups, i.e., comparing the model-implied indicator
variance-covariance matrix across groups using a permutation test
[Klesel et al., in press].
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Confirmatory Composite Analysis

Thank you!
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Florian Schuberth
email: f.schuberth@utwente.nl
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