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Latent variables

Type of theoretical construct

Criterion: Latent variable

Dominant statistical model: Common factor model
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Fundamental scientific question: Does the latent variable exist?
Scientific paradigm: Positivism
Examples: Abilities, attitudes,

traits
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Artifacts

Many disciplines deal with an interplay of behavioral (latent
variable) and design constructs (artifacts) such as

Discipline Latent variable Artifact

Marketing: Consumer brand attitude Advertising mix
Criminology: Intention to commit a crime Prevention strategy

Education: Pupil’s knowledge base Teaching program
Psychotherapy: Mental illness Psychiatric treatment

→ How to model these artifacts?
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Two kinds of constructs

Type of theoretical construct

Criterion: Latent variable Artifact

Dominant statistical model: Common factor model Composite model
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η
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ε1 ε3ε2
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c

w2w1 w3

Fundamental scientific question: Does the latent variable exist? Is the artifact useful?
Scientific paradigm: Positivism Pragmatism
Examples: Abilities, attitudes,

traits
Indices, therapies,
intervention programs
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Confirmatory Composite Analysis

The confirmatory composite analysis (CCA) consists of 4 steps:

1 Specification of the composite model

2 Identification of the composite model

3 Estimation of the composite model

4 Assessment of the composite model
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Specification of the composite model

y c
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Minimal composite model 7/16



Is this a statistical model?

Consider the model-implied indicator population covariance matrix:

Σ =



y x1 x2 z

σyy

λ1σyc σ11

λ2σyc σ12 σ22

σyz λ1σcz λ2σcz σzz

 ,

where λ1 = cov(x1, c) and λ2 = cov(x2, c).
This matrix has rank-one constraints, which can be exploited in
statistical testing.→ Indeed, it is a statistical model
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Identification of the composite model

Identification of composite models is straightforward:1

I Normalization of the weights, e.g., w ′
jΣjjw j = 1

I Each composite must be connected to at least one composite
or variable not forming the composite→ All model parameters can be uniquely retrieved from the

population indicator covariance matrix

1We ignore trivial regularity assumptions such as weight vectors consisting
of zeros only; and similarly, we ignore cases where intra-block covariance
matrices are singular.

9/16



Estimation of the composite model

For determining the weights, several methods have been proposed:
I Sum scores
I Expert weighting
I Approaches to generalized canonical correlation analysis

(GCCA) such as MAXVAR
[Kettenring, 1971]

I Regularized general canonical correlation analysis (RGCCA)
[Tenenhaus & Tenenhaus, 2011]

I Partial least squares path modeling (PLS-PM)
[Wold, 1975]

I Generalized structured component analysis (GSCA)
[Hwang & Takane, 2004]
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Assessment of the composite model

The overall model fit can be assessed in two non-exclusive ways:

I Measures of fit (heuristic rules)

I Test for overall model fit
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Assessment of the composite model

To test the overall model fit, a bootstrap-based test can be used
(H0 : Σ = Σ(θ)) [Beran & Srivastava, 1985, Bollen & Stine, 1992]
in combination with various discrepancy measures such as

I Standardized root mean squared residual (SRMR)

I Geodesic distance (dG )

I Euclidean distance (dL)

12/16



Is the test for overall model fit capable to detect misspecifications
in the composite model such as

I Wrongly assigned indicators

I Correlations between indicators of different blocks that cannot
be fully explained by the composites→ Monte Carlo simulation, where we use MAXVAR to determine

the weights
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Monte Carlo simulation

Experimental condition Population model Specified model
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Rejection rates
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Confirmatory Composite Analysis

Thank you!
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