UNIVERSITY OF TWENTE.

SEM Meeting, Amsterdam

Confirmatory Composite Analysis

Florian Schuberth¹ Jörg Henseler¹ Theo K. Dijkstra² ¹University of Twente ²Unversity of Groningen March 16, 2018

Overview

Motivation

- 2 Confirmatory Composite Analysis
 - Model Specification
 - Model Identification
 - Model Estimation
 - Model Assessment

Type of theoretical construct

Many disciplines deal with an interplay of behavioral (latent variable) and design constructs (artifacts) such as

Discipline	Latent variable	Artifact
Marketing:	Consumer brand attitude	Advertising mix
Criminology:	Intention to commit a crime	Prevention strategy
Education:	Pupil's knowledge base	Teaching program
Psychotherapy:	Mental illness	Psychiatric treatment

 \rightarrow How to model these artifacts?

Type of theoretical construct

5/16

The confirmatory composite analysis (CCA) consists of 4 steps:

- Specification of the composite model
- Identification of the composite model
- Stimation of the composite model
- Assessment of the composite model

Specification of the composite model

Minimal composite model

Consider the model-implied indicator population covariance matrix:

$$\boldsymbol{\Sigma} = \begin{pmatrix} \underline{y} & \underline{x_1} & \underline{x_2} & \underline{z} \\ \sigma_{yy} & & & \\ \lambda_1 \sigma_{yc} & \sigma_{11} & & \\ \lambda_2 \sigma_{yc} & \sigma_{12} & \sigma_{22} & \\ \sigma_{yz} & \lambda_1 \sigma_{cz} & \lambda_2 \sigma_{cz} & \sigma_{zz} \end{pmatrix}$$

where $\lambda_1 = \operatorname{cov}(x_1, c)$ and $\lambda_2 = \operatorname{cov}(x_2, c)$.

This matrix has rank-one constraints, which can be exploited in statistical testing.

 \rightarrow Indeed, it is a statistical model

,

Identification of composite models is straightforward:¹

- Normalization of the weights, e.g., $\boldsymbol{w}_j' \boldsymbol{\Sigma}_{jj} \boldsymbol{w}_j = 1$
- Each composite must be connected to at least one composite or variable not forming the composite
- \rightarrow All model parameters can be uniquely retrieved from the population indicator covariance matrix

¹We ignore trivial regularity assumptions such as weight vectors consisting of zeros only; and similarly, we ignore cases where intra-block covariance matrices are singular.

Estimation of the composite model

For determining the weights, several methods have been proposed:

- Sum scores
- Expert weighting
- Approaches to generalized canonical correlation analysis (GCCA) such as MAXVAR [Kettenring, 1971]
- Regularized general canonical correlation analysis (RGCCA) [Tenenhaus & Tenenhaus, 2011]
- Partial least squares path modeling (PLS-PM) [Wold, 1975]
- Generalized structured component analysis (GSCA) [Hwang & Takane, 2004]

The overall model fit can be assessed in two non-exclusive ways:

- Measures of fit (heuristic rules)
- ► Test for overall model fit

To test the overall model fit, a bootstrap-based test can be used $(H_0: \Sigma = \Sigma(\theta))$ [Beran & Srivastava, 1985, Bollen & Stine, 1992] in combination with various discrepancy measures such as

- Standardized root mean squared residual (SRMR)
- Geodesic distance (d_G)
- Euclidean distance (d_L)

Is the test for overall model fit capable to detect misspecifications in the composite model such as

- Wrongly assigned indicators
- Correlations between indicators of different blocks that cannot be fully explained by the composites

 \rightarrow Monte Carlo simulation, where we use MAXVAR to determine the weights

Monte Carlo simulation

Rejection rates

Significance level: ▲ 10% ■ 5% ● 1%

Confirmatory Composite Analysis

Thank you!

Florian Schuberth email: f.schuberth@utwente.nl UNIVERSITY OF TWENTE.

References

Beran, R. & Srivastava, M.S. (1985) Bootstrap tests and confidence regions for functions of a covariance matrix *The Annals of Statistics* 13(1) 95 – 115.

Bollen, K. A. & Stine, R. A. (1992) Bootstrapping goodness-of-fit measures in structural equation models Sociological Methods & Research 21(2) 205 – 229.

Hwang, H. & Takane, Y. (2004) Generalized structured component analysis *Psychometrika* 69(1) 81 – 99.

References

Kettenring, J.R. (1971)

Canonical analysis of several sets of variables *Biometrika*, 58(3), 433 – 451.

Pearson, K. (1901)

On lines and planes of closest fit to systems of points in space *Philosophical Magazine Series 6* 2(11) 559 – 572.

Tenenhaus, A. & Tenenhaus, M. (2011) Regularized generalized canonical correlation analysis *Psychometrika* 76(2) 257 – 284.

Wold, A.O.H. (1975)

Path models with latent variables: The NIPALS approach. In H. Blalock, A. Aganbegian, F. Borodkin, R. Boudon, & V. Capecchi (Eds.) *Quantitative Sociology*, 307 - 357, New York Academic Press.